识别数据人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,景区通道闸厂家,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。配合程度现有的人脸识别系统在用户配合、采集条件比较理想的情况下可以取得令人满意的结果。但是,在用户不配合、采集条件不理想的情况下,现有系统的识别率将陡然下降。比如,镇江景区通道闸,人脸比对时,景区通道闸报价,与系统中存储的人脸有出入,例如剃了胡子、换了发型、多了眼镜、变了表情都有可能引起比对失败。
传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。迅速发展起来的一种解决方案是基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了的识别性能,在精度、稳定性和速度方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的性和不易被的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;